

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : LPVD(16EC5709)

Branch & Specialization: M.Tech – VLSI

Year & Sem: I-M.Tech & II-Sem

Regulation: R16

<u>UNIT –I</u>

LOW POWER DESIGN, AN OVER VIEW & MOS/BICMOS PROCESSES		
1a) What are the various limitations of Low-voltage, Low-power design	[5M]	
b) Explain about Silicon-on-Insulator(SOI) technology	[5M]	
2 a) Describe triple diffused (3D) BiCMOS process with neat sketch	[5M]	
b) Draw the structure of Twin-well BiCMOS process and explain the same	[5M]	
3. Explain High-performance, High-cost digital p-well CMOS process	[10M]	
4 a) What are the BiCMOS manufacturing and Integration considerations	[6M]	
b)What are the advantages in the production of Graded-Drain structures	[4M]	
5) Draw the Retrograde-well CMOS process with neat diagrams. Explain how susceptibility to latch up		
and punch through is reduced.	[10M]	
6 a) Explain about punch through in short – channel MOSFETS.	[5M]	
b) Describe different process considerations for Bipolar transistors	[5M]	
7. Explain the following Isolation techniques in BiCMOS transistors		
a) Junction isolation in the SBC process	[5M]	
b) Oxide-isolated Bipolar transistors	[5M]	
8. Briefly describe LOCOS isolation technique in MOS transistors with neat sketch	[10M]	
9. Explain the following with neat diagrams		
a) Shallow trench Isolation	[5M]	
b) Deep trench Isolation	[5M]	
10. What are the considerations for integrated Analog/digital BiCMOS process	[10M]	

QUESTION BANK 2017

<u>UNIT-II</u>

LOW-VOLTAGE/LOW POWER CMOS/ BiCMOS PROCESSES <u>& DEVICE BEHAVIOR AND MODELING</u>

1) With the help of neat sketches explain about Polysilcon Emitter High- performance BICMO	S
structures and explain about the process steps.	[10M]
2 a) What are the steps in implementing copper metallization in deep sub micron process? Expla	ain. [5M]
b) Explain BSIM2 and BSIM3 spice models	[5M]
3. What are the fabrication process steps for Low-voltage/Low-power SOI CMOS	[10M]
4 a) Explain Lateral BJT on SOI	[6M]
b) What are the limitations of the MOSFET characteristics?	[4M]
5 a) What are the future trends and directions in CMOS/BICMOS processes? Explain.	[6M]
b) Briefly explain LEVEL4 MOSFET Spice model	[4M]
 6. Describe the following two advanced MOSFET models a) HSPICE level 50 (Philips MOS 9) model. b) EKV MOSFET model 7. Explain the following Bipolar spice models 	[5M] [5M]
a) Ebers-Moll model	[5M]
b) Modified Gummel-Poon Model	[5M]
8. Explain the various features of HICUM transistor Model	[10M]
9 a) Explain the MOSFET in a hybrid-mode environment	[5M]
b) Explain the static characteristics of a MOSFET transistor	[5M]
10 a) Describe briefly about VBIC95 Bipolar spice model	[5M]
b) Explain the Noise model of HSPICE Level 50	[5M]

QUESTION BANK 2017

<u>UNIT III</u>

CMOS AND Bi-CMOS LOGIC GATES & LOW- VOLTAGE LOW POWER LOGIC CIRCUITS

1. Describe about the following conventional logic gates		
a) CMOS and	[5M]	
b) BiCMOS	[5M]	
2 a) Draw the circuit for Full Swing complimentary MOS / Bipolar logic circuit for two input		
NAND gate and explain its operation.	[6M]	
b) Draw the circuit for High performance complimentary coupled BICMOS three input NAND and		
explain its working.	[4M]	
3a) Explain the Merged BiCMOS digital circuits and evaluate its performance	[5M]	
b) With a neat sketch, Explain the FS-CMBL with Feedback circuit and its features	[5M]	
4. Describe the operation of Quasi-complimentary BiCMOS digital circuits and analyse its performance		
	[10M]	
5 a) Explain Full swing BiCMOS/BiNMOS Digital circuits employing schottky diodes	[5M]	
b) Explain FS-Multidrain/Multicollector Complementary BiCMOS Buffers		
with a neat diagram	[5M]	
6. Explain feedback-type BiCMOS digital circuits	[10M]	
7. Describe the operation of High beta BiCMOS digital circuits and analyse its performance [10M]		
8. Explain the following Bootstrapped-type BiCMOS digital circuits	[10M]	
a) 1.5V logic gate	[5M]	
b) Full swing Inverter	[5M]	
9a) Explain BiNMOSs version of Bootstrapped circuit with neat sketch	[5M]	
b) What are the design considerations of 1.5V Bootstrapped Full swing		
BiCMOS/BiNMOS inverter	[5M]	
10 a) Explain the working of twin capacitor BiNMOS logic gate and evaluate its performance [5M]		
b) Describe ESD-free BiCMOS digital circuits and perform its comparative evaluation	[5M]	

QUESTION BANK 2017	
<u>UNIT –IV</u>	
LOW POWER LATCHES AND FLIP FLOPS	
1a) Explain about the pipelining theme and high performance and low power theme for latches and flip flops.b) What are setup time and hold times? Explain the MOCF and setup time and hold time considerations.	[5M] [5M]
2a) Explain the need for Low-power latches and flipflops	[5M]
b) Describe the evolution of latches and flipflops	[5M]
3a) Describe various quality measures for latches and flipflops	[5M]
b) Briefly explain single-edge triggered flipflops with neat sketch	[5M]
4a) Explain double-edge triggered flipflops with neat sketch	[6M]
b) Explain different power dissipation measures	[4M]
5a) Describe static and semistatic flipflops with neat diagrams	[6M]
b) What is meant by Synchronous theme of Flipflops	[4M]
6. Explain High-performance and Low power theme of CMOS	[10M]
7. Explain the following terms:	
a) MOCF	[5M]
b) Clock skew	[5M]
8. What is the principle of operation of DETFF2	[10M]
9a) How to calculate power dissipation of a latch	[5M]
b) Explain Dynamic Flipflops	[5M]
10. Explain the following performance measures of a latch/flipflop	
a) Full swing Considerations	[5M]
b) MOCF	[5M]

QUESTION BANK 2017

<u>UNIT V</u>

SPECIAL TECHNIQUES

1a) What is meant by clock ? Why is it required ?	[5M]
b) Explain various power reduction techniques in clock networks	[5M]
2. Briefly describe CMOS Floating node	[10 M]
3. Explain various delay balancing techniques with a neat sketch	[10 M]
4a) Explain different low power techniques for SRAM	[5M]
b)What is SRAM ? Draw the circuit of SRAM	[5M]
5a) What is meant by Clock Distribution Network	[5M]
b)What is Resonant clocking	[5M]

Prepared by: **<u>S.SRUTHI</u>**.